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Fundamental Neural 
Network 

Components

• Computing units
• Activation functions
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How do we use these 
fundamental components to make 

complex decisions?
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Combining 
Computational Units

• Neural networks are powerful primarily because they 
are able to combine multiple computational units 
into larger networks

• Many problems cannot be solved using a single 
computational unit
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Early example of this: The XOR problem

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0
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AND and OR can 
both be solved 
using a single 
perceptron.

x1

x2

b

w1

w2

wb

∑

• Perceptron: A function that outputs a binary value 
based on whether the product of its inputs and 
associated weights surpasses a threshold

• Learns this threshold iteratively by trying to find 
the boundary that is best able to distinguish 
between data of different categories

𝑦 = #0, if 𝑤 ) 𝑥 + 𝑏 ≤ 0
1, if 𝑤 ) 𝑥 + 𝑏 > 0
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It’s easy to 
compute 
AND and OR 
using 
perceptrons.

AND

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 -1

Natalie Parde - UIC CS 421 6



It’s easy to 
compute 
AND and OR 
using 
perceptrons.

OR

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 0
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However, it’s 
impossible to 
compute XOR using 
a single perceptron.

x1

x2

0

1

• Why?
• Perceptrons are linear classifiers
• XOR is not a linearly separable function

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0
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The only successful way to compute XOR is by 
combining these smaller units into a larger network.
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Truth Table Examples: XOR
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Why does this work?
• When computational units are combined, the outputs from each 

successive layer provide new representations for the input
• These new representations are linearly separable
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Combining 
Computational 

Units

• In our XOR example, we manually assigned 
weights to each unit

• In real-world examples, these weights are 
learned automatically using a 
backpropagation algorithm

• Thus, the network is able to learn a useful 
representation of the input training data on 
its own

• Key advantage of neural networks
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More about specific 
unit types in 
feedforward 
networks….

• Three main unit types:
• Input units
• Hidden units
• Output units
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Input Units

• Vector of scalar values
• Word embedding
• Other feature vector

• No computations performed in input units
• An input (layer 0) vector x has a dimensionality of n0, where n0 is the number of inputs

• So, 𝑥 ∈ ℝ!!

0.5 0.2 0.1 0.7 0.4
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Hidden Layers
• Remember: Individual computation units have parameters w (the weight vector) 

and b (the bias)
• The parameters for an entire hidden layer (including all computation units within 

that layer) can then be represented as:
• W: Weight matrix containing the weight vector wi for each unit i
• b: Bias vector containing the bias value bi for each unit i

• Single bias for layer, but each unit can associate a different weight with 
the bias

• Wij represents the weight of the connection from a unit in the previous (input or 
hidden) layer xi to a unit in the next layer hj
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Why 
represent 
W as a 
single 
matrix?

• More efficient computation across the 
entire layer

• Use matrix operations!
• Multiply the weight matrix by input vector x
• Add the bias vector b
• Apply the activation function g (e.g., 

sigmoid, tanh, or ReLU)
• This means that we can compute a 

vector h representing the output of a 
hidden layer as follows:

• h = 𝜎(𝑊x + b)
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Hidden 
Layer 
Dimensions
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• A hidden layer has dimensionality n1, 
where n1 is the number of hidden 
units in the layer

• So, ℎ ∈ ℝ!" and 𝑏 ∈ ℝ!"
(remember, b contains the 
different weighted bias values 
associated with each hidden unit)

• The weight matrix between layers n0
and n1 thus has the dimensionality 
𝑊 ∈ ℝ!"×!!



Output Units
• Provide probabilities indicating whether 

the input belongs to a given class
• Number of output units can vary:

• Binary classification might have a 
single output unit

• Multinomial classification (e.g., part-of-
speech tagging) might have an output 
unit for each class
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Output 
Layer

• Provides a probability distribution across 
the output nodes

• How?
• Output layer also has a weight matrix, U
• Following intuition, 𝑧 = 𝑈h, where h is 

the vector of outputs from the previous 
hidden layer
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Output 
Layer 
Dimensions

• Letting nj be the number of nodes in the 
output layer, 𝑧 ∈ ℝ!!

• The weight matrix U thus has the 
dimensionality 𝑈 ∈ ℝ!!×!", where ni is 
the number of hidden units in the 
previous layer

• Uab is the weight from unit b in the hidden 
layer to unit a in the output layer
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Just like with logistic regression, the values 
in z are just real-valued numbers.

• We need to convert them to probabilities instead!
• We do this using activation functions

• Sigmoid
• Softmax
• Etc.

• Popular choice in multinomial feedforward networks: 
Softmax

• Increase the probability of the highest value in the 
vector

• Decrease the probabilities of the other values
• softmax 𝑧" = #!"

∑#$%
|z| #!#
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Feedforward 
Network

• Final set of equations:
• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• This represents a two-layer feedforward 
neural network

• When numbering layers, count the 
hidden and output layers but not the 
input layer
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What if we 
want our 

network to 
have more 

than two 
layers?

• Let W[n] be the weight matrix for layer n, b[n]
be the bias vector for layer n, and so forth

• Let 𝑔(6) be any activation function
• Let a[n] be the output from layer n, and z[n]

be the combination of weights and biases 
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]
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What if we 
want our 
network to 
have more 
than two 
layers?

• With this representation, a two-layer network 
becomes:

• 𝑧[7] = 𝑊[7]𝑎[9] + 𝑏[7]

• 𝑎[7] = 𝑔 7 𝑧 7

• 𝑧[:] = 𝑊[:]𝑎[7] + 𝑏[:]

• 𝑎[:] = 𝑔 : (𝑧 : )
• 𝑦; = 𝑎[:]

• With this notation, we can easily generalize to 
networks with more layers:

• For i in 1..n
• 𝑧[<] = 𝑊[<]𝑎[<=7] + 𝑏[<]

• 𝑎[<] = 𝑔 < (𝑧 < )
• 𝑦; = 𝑎[>]
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Activation 
functions 
for the final 
layer are 
often 
different 
from earlier 
layers.



How do we train neural 
networks?

qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers
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How do we train neural 
networks?

üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Cross-entropy loss
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Gradient descent
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

???
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Backpropagation
• A method for propagating loss values all the 

way back to the beginning of a deep neural 
network, even though it’s only computed at 
the end of the network

Natalie Parde - UIC CS 421 38



Why is this 
necessary?

• Simply taking the derivative like we did for 
logistic regression only provides the 
gradient for the most recent (i.e., last) 
weight layer

• What we need is a way to:
• Compute the derivative with respect to 

weight parameters occurring earlier in 
the network as well

• Even though we can only compute loss 
at a single point (the end of the 
network)
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Backpropagation 
in a nutshell….

• Compute your loss at the final layer
• Propagate your loss backward using 

the chain rule
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with 
respect to v(x)

• Find the derivative of v(x) with 
respect to x

• Multiply the two together
• #$
#%
= #&

#'
∗ #'
#%

• Update weights at each layer based on 
this information
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General Tips for 
Improving Neural 
Network Performance
• Normalize input values to have a mean of 0
• Initialize weights with small random numbers
• Randomly drop some units and their connections 

from the network during training (dropout)
• Tune hyperparameters

• Learning rate
• Number of layers
• Number of units per layer
• Type of activation function
• Type of optimization function
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Fortunately, you shouldn’t need to build 
your neural networks from scratch!

• https://www.tensorflow.org/

TensorFlow

• https://keras.io/

Keras

• https://pytorch.org/

PyTorch

• https://deeplearning4j.org/

DL4J
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Neural 
Language 

Models

• Popular application of neural networks
• Advantages over n-gram language models:

• Can handle longer histories
• Can generalize over contexts of similar 

words
• Disadvantage:

• Slower to train
• Neural language models have higher 

predictive accuracy than n-gram language 
models trained on datasets of similar sizes
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Neural Language Models
• Neural language models are used to 

boost performance for many modern NLP 
tasks

• Machine translation
• Dialogue systems
• Language generation
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Sample Generated by a Neural 
Language Model (GPT-2)
• Link to article: https://openai.com/blog/better-language-models/

System Prompt (Human-Written): In a shocking finding, scientist discovered a herd of unicorns 
living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the 
researchers was the fact that the unicorns spoke perfect English.

Natalie Parde - UIC CS 421 45
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Sample Generated by a Neural 
Language Model (GPT-2)
Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. 
These four-horned, silver-white unicorns were previously unknown to science.
Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes 
Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be
a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with 
some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move
too much to see them – they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez 
stated, “We can see, for example, that they have a common ‘language,’ something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost 
race of people who lived there before the arrival of humans in those parts of South America.
While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each 
other in a time before human civilization. According to Pérez, “In South America, such incidents seem to be quite common.”
However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a 
lost alien race is through DNA. “But they seem to be able to communicate in English quite well, which I believe is a sign of 
evolution, or at least a change in social organization,” said the scientist.
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There are 
many 
different 
architectures 
for neural 
language 
modeling.

https://beta.openai.com/playground
https://huggingface.co/xlnet-

base-cased

https://huggingface.co/facebook/opt-
125m

https://huggingface.co/bigscience/bloo
m-560m
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Feedforward 
Neural 
Language 
Model

• Input: Representation of some number of 
previous words

• wt-1, wt-2, etc.
• Output: Probability distribution over possible 

next words
• Goal: Approximate the probability of a word 

given the entire prior context 𝑃(𝑤?|𝑤7?=7)
based on the n previous words

• 𝑃(𝑤?|𝑤7?=7) ≈ 𝑃(𝑤?|𝑤?=>@7?=7 )
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Neural 
language 
models 
represent 
prior context 
using 
embeddings 
of the 
previous 
words.

• Allows them to generalize to unseen 
data better than n-gram models

• Embeddings can come from various 
sources

• E.g., pretrained Word2Vec embeddings
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Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤# = “record”|𝑤#$% = “to”, 𝑤#$& = “down”, 𝑤#$' = “sat”)
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Neural Language Model

Natalie Parde - UIC CS 421
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Neural Language Model

h1
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Neural Language Model

h1

h2
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Neural Language Model

h1

h2
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…
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…

y|V|
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Neural Language Model
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What if we 
don’t already 
have dense 
word 
embeddings?

• When we use another algorithm to learn 
the embeddings for our input words, this is 
called pretraining

• However, sometimes it’s preferable to learn 
embeddings while training the network, 
rather than using pretrained embeddings

• E.g., if the desired application places 
strong constraints on what makes a 
good representation
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Learning 
New 

Embeddings

• Start with a one-hot vector for each word 
in the vocabulary

• Element for a given word is set to 1
• All other elements are set to 0

• Randomly initialize the hidden 
(weight/embedding) layer

• Maintain a separate vector of weights for 
that layer, for each vocabulary word
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Formal 
Definition: 

Learning 
New 

Embeddings

• Letting E be an embedding matrix, with one row 
for each word in the vocabulary:

• e = (𝐸%" , 𝐸%( , … , 𝐸%))
• h = 𝜎 𝑊e + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• Optimizing this network using the same 
techniques discussed for other neural networks 
will result in both 

• A model that predicts words
• A new set of word embeddings that can be 

used for other tasks
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Neural Language Model
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Summary: 
Neural 
Networks and 
Neural 
Language 
Models

• Computing units can be combined with 
another to solve complex tasks

• Depending on their location within the 
network architectures, units may represent 
input, internal compute units (hidden
units), or output classification units

• Loss can be propagated backward through 
the network from the output layer to earlier 
layers using backpropagation

• Network architectures can be optimized via 
a fine-tuning process

• Neural networks can be used to build 
neural language models

• Neural language models can also be used 
to learn new language representations
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