
Neural Networks
and Neural
Language Models
Natalie Parde
UIC CS 421

Fundamental Neural
Network

Components

• Computing units
• Activation functions

Natalie Parde - UIC CS 421

How do we use these
fundamental components to make

complex decisions?

2

Combining
Computational Units

• Neural networks are powerful primarily because they
are able to combine multiple computational units
into larger networks

• Many problems cannot be solved using a single
computational unit

Natalie Parde - UIC CS 421
3

Early example of this: The XOR problem

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

Natalie Parde - UIC CS 421 4

AND and OR can
both be solved
using a single
perceptron.

x1

x2

b

w1

w2

wb

∑

• Perceptron: A function that outputs a binary value
based on whether the product of its inputs and
associated weights surpasses a threshold

• Learns this threshold iteratively by trying to find
the boundary that is best able to distinguish
between data of different categories

𝑦 = #0, if 𝑤) 𝑥 + 𝑏 ≤ 0
1, if 𝑤) 𝑥 + 𝑏 > 0

Natalie Parde - UIC CS 421 5

It’s easy to
compute
AND and OR
using
perceptrons.

AND

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if) * + + - ≤ 0
1, if) * + + - > 0

1

1

1 -1

Natalie Parde - UIC CS 421 6

It’s easy to
compute
AND and OR
using
perceptrons.

OR

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if) * + + - ≤ 0
1, if) * + + - > 0

1

1

1 0

Natalie Parde - UIC CS 421 7

However, it’s
impossible to
compute XOR using
a single perceptron.

x1

x2

0

1

• Why?
• Perceptrons are linear classifiers
• XOR is not a linearly separable function

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

Natalie Parde - UIC CS 421 8

The only successful way to compute XOR is by
combining these smaller units into a larger network.

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

ReLU

ReLU

ReLU

Natalie Parde - UIC CS 421 9

Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 10

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 11

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 12

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 13

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 14

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 15

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 16

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

1

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 17

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 421 18

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 421 19

Combining
Computational

Units

• In our XOR example, we manually assigned
weights to each unit

• In real-world examples, these weights are
learned automatically using a
backpropagation algorithm

• Thus, the network is able to learn a useful
representation of the input training data on
its own

• Key advantage of neural networks

Natalie Parde - UIC CS 421 20

More about specific
unit types in
feedforward
networks….

• Three main unit types:
• Input units
• Hidden units
• Output units

Natalie Parde - UIC CS 421 21

Input Units

• Vector of scalar values
• Word embedding
• Other feature vector

• No computations performed in input units
• An input (layer 0) vector x has a dimensionality of n0, where n0 is the number of inputs

• So, 𝑥 ∈ ℝ!!

0.5 0.2 0.1 0.7 0.4

Natalie Parde - UIC CS 421 22

Hidden Layers
• Remember: Individual computation units have parameters w (the weight vector)

and b (the bias)
• The parameters for an entire hidden layer (including all computation units within

that layer) can then be represented as:
• W: Weight matrix containing the weight vector wi for each unit i
• b: Bias vector containing the bias value bi for each unit i

• Single bias for layer, but each unit can associate a different weight with
the bias

• Wij represents the weight of the connection from a unit in the previous (input or
hidden) layer xi to a unit in the next layer hj

Natalie Parde - UIC CS 421 23

Why
represent
W as a
single
matrix?

• More efficient computation across the
entire layer

• Use matrix operations!
• Multiply the weight matrix by input vector x
• Add the bias vector b
• Apply the activation function g (e.g.,

sigmoid, tanh, or ReLU)
• This means that we can compute a

vector h representing the output of a
hidden layer as follows:

• h = 𝜎(𝑊x + b)

Natalie Parde - UIC CS 421 24

Hidden
Layer
Dimensions

25

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• A hidden layer has dimensionality n1,
where n1 is the number of hidden
units in the layer

• So, ℎ ∈ ℝ!" and 𝑏 ∈ ℝ!"
(remember, b contains the
different weighted bias values
associated with each hidden unit)

• The weight matrix between layers n0
and n1 thus has the dimensionality
𝑊 ∈ ℝ!"×!!

Output Units
• Provide probabilities indicating whether

the input belongs to a given class
• Number of output units can vary:

• Binary classification might have a
single output unit

• Multinomial classification (e.g., part-of-
speech tagging) might have an output
unit for each class

Natalie Parde - UIC CS 421 26

Output
Layer

• Provides a probability distribution across
the output nodes

• How?
• Output layer also has a weight matrix, U
• Following intuition, 𝑧 = 𝑈h, where h is

the vector of outputs from the previous
hidden layer

Natalie Parde - UIC CS 421 27

Output
Layer
Dimensions

• Letting nj be the number of nodes in the
output layer, 𝑧 ∈ ℝ!!

• The weight matrix U thus has the
dimensionality 𝑈 ∈ ℝ!!×!", where ni is
the number of hidden units in the
previous layer

• Uab is the weight from unit b in the hidden
layer to unit a in the output layer

Natalie Parde - UIC CS 421 28

Just like with logistic regression, the values
in z are just real-valued numbers.

• We need to convert them to probabilities instead!
• We do this using activation functions

• Sigmoid
• Softmax
• Etc.

• Popular choice in multinomial feedforward networks:
Softmax

• Increase the probability of the highest value in the
vector

• Decrease the probabilities of the other values
• softmax 𝑧" = #!"

∑#$%
|z| #!#

Natalie Parde - UIC CS 421 29

Feedforward
Network

• Final set of equations:
• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• This represents a two-layer feedforward
neural network

• When numbering layers, count the
hidden and output layers but not the
input layer

Natalie Parde - UIC CS 421 30

What if we
want our

network to
have more

than two
layers?

• Let W[n] be the weight matrix for layer n, b[n]
be the bias vector for layer n, and so forth

• Let 𝑔(6) be any activation function
• Let a[n] be the output from layer n, and z[n]

be the combination of weights and biases
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]

Natalie Parde - UIC CS 421 31

What if we
want our
network to
have more
than two
layers?

• With this representation, a two-layer network
becomes:

• 𝑧[7] = 𝑊[7]𝑎[9] + 𝑏[7]

• 𝑎[7] = 𝑔 7 𝑧 7

• 𝑧[:] = 𝑊[:]𝑎[7] + 𝑏[:]

• 𝑎[:] = 𝑔 : (𝑧 :)
• 𝑦; = 𝑎[:]

• With this notation, we can easily generalize to
networks with more layers:

• For i in 1..n
• 𝑧[<] = 𝑊[<]𝑎[<=7] + 𝑏[<]

• 𝑎[<] = 𝑔 < (𝑧 <)
• 𝑦; = 𝑎[>]

Natalie Parde - UIC CS 421 32

Activation
functions
for the final
layer are
often
different
from earlier
layers.

How do we train neural
networks?

qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Natalie Parde - UIC CS 421 34

How do we train neural
networks?

üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Cross-entropy loss

Natalie Parde - UIC CS 421 35

How do we train neural
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Gradient descent

Natalie Parde - UIC CS 421 36

How do we train neural
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

???

Natalie Parde - UIC CS 421 37

Backpropagation
• A method for propagating loss values all the

way back to the beginning of a deep neural
network, even though it’s only computed at
the end of the network

Natalie Parde - UIC CS 421 38

Why is this
necessary?

• Simply taking the derivative like we did for
logistic regression only provides the
gradient for the most recent (i.e., last)
weight layer

• What we need is a way to:
• Compute the derivative with respect to

weight parameters occurring earlier in
the network as well

• Even though we can only compute loss
at a single point (the end of the
network)

Natalie Parde - UIC CS 421 39

Backpropagation
in a nutshell….

• Compute your loss at the final layer
• Propagate your loss backward using

the chain rule
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with
respect to v(x)

• Find the derivative of v(x) with
respect to x

• Multiply the two together
• #$
#%
= #&

#'
∗ #'
#%

• Update weights at each layer based on
this information

Natalie Parde - UIC CS 421 40

General Tips for
Improving Neural
Network Performance
• Normalize input values to have a mean of 0
• Initialize weights with small random numbers
• Randomly drop some units and their connections

from the network during training (dropout)
• Tune hyperparameters

• Learning rate
• Number of layers
• Number of units per layer
• Type of activation function
• Type of optimization function

Natalie Parde - UIC CS 421 41

Fortunately, you shouldn’t need to build
your neural networks from scratch!

• https://www.tensorflow.org/

TensorFlow

• https://keras.io/

Keras

• https://pytorch.org/

PyTorch

• https://deeplearning4j.org/

DL4J

Natalie Parde - UIC CS 421 42

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://deeplearning4j.org/

Neural
Language

Models

• Popular application of neural networks
• Advantages over n-gram language models:

• Can handle longer histories
• Can generalize over contexts of similar

words
• Disadvantage:

• Slower to train
• Neural language models have higher

predictive accuracy than n-gram language
models trained on datasets of similar sizes

Natalie Parde - UIC CS 421 43

Neural Language Models
• Neural language models are used to

boost performance for many modern NLP
tasks

• Machine translation
• Dialogue systems
• Language generation

Natalie Parde - UIC CS 421 44

Sample Generated by a Neural
Language Model (GPT-2)
• Link to article: https://openai.com/blog/better-language-models/

System Prompt (Human-Written): In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

Natalie Parde - UIC CS 421 45

https://openai.com/blog/better-language-models/

Sample Generated by a Neural
Language Model (GPT-2)
Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn.
These four-horned, silver-white unicorns were previously unknown to science.
Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes
Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be
a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with
some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move
too much to see them – they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez
stated, “We can see, for example, that they have a common ‘language,’ something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost
race of people who lived there before the arrival of humans in those parts of South America.
While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each
other in a time before human civilization. According to Pérez, “In South America, such incidents seem to be quite common.”
However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a
lost alien race is through DNA. “But they seem to be able to communicate in English quite well, which I believe is a sign of
evolution, or at least a change in social organization,” said the scientist.

Natalie Parde - UIC CS 421 46

There are
many
different
architectures
for neural
language
modeling.

https://beta.openai.com/playground
https://huggingface.co/xlnet-

base-cased

https://huggingface.co/facebook/opt-
125m

https://huggingface.co/bigscience/bloo
m-560m

47

https://beta.openai.com/playground
https://huggingface.co/xlnet-base-cased
https://huggingface.co/facebook/opt-125m
https://huggingface.co/bigscience/bloom-560m

Feedforward
Neural
Language
Model

• Input: Representation of some number of
previous words

• wt-1, wt-2, etc.
• Output: Probability distribution over possible

next words
• Goal: Approximate the probability of a word

given the entire prior context 𝑃(𝑤?|𝑤7?=7)
based on the n previous words

• 𝑃(𝑤?|𝑤7?=7) ≈ 𝑃(𝑤?|𝑤?=>@7?=7)

Natalie Parde - UIC CS 421 48

Neural
language
models
represent
prior context
using
embeddings
of the
previous
words.

• Allows them to generalize to unseen
data better than n-gram models

• Embeddings can come from various
sources

• E.g., pretrained Word2Vec embeddings

Natalie Parde - UIC CS 421 49

Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤# = “record”|𝑤#$% = “to”, 𝑤#$& = “down”, 𝑤#$' = “sat”)

Natalie Parde - UIC CS 421 50

Neural Language Model

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤# = “record”|𝑤#$% = “to”, 𝑤#$& = “down”, 𝑤#$' = “sat”)

51

Neural Language Model

h1

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤# = “record”|𝑤#$% = “to”, 𝑤#$& = “down”, 𝑤#$' = “sat”)

52

Neural Language Model

h1

h2

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤# = “record”|𝑤#$% = “to”, 𝑤#$& = “down”, 𝑤#$' = “sat”)

53

Neural Language Model

h1

h2

y1

…

“record”

…

y|V|

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤# = “record”|𝑤#$% = “to”, 𝑤#$& = “down”, 𝑤#$' = “sat”)

54

Neural Language Model

h1

h2

y1

…

“record”

…

y|V|

softmax
distribution over
all words in the
vocabulary

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤# = “record”|𝑤#$% = “to”, 𝑤#$& = “down”, 𝑤#$' = “sat”)

55

What if we
don’t already
have dense
word
embeddings?

• When we use another algorithm to learn
the embeddings for our input words, this is
called pretraining

• However, sometimes it’s preferable to learn
embeddings while training the network,
rather than using pretrained embeddings

• E.g., if the desired application places
strong constraints on what makes a
good representation

Natalie Parde - UIC CS 421 56

Learning
New

Embeddings

• Start with a one-hot vector for each word
in the vocabulary

• Element for a given word is set to 1
• All other elements are set to 0

• Randomly initialize the hidden
(weight/embedding) layer

• Maintain a separate vector of weights for
that layer, for each vocabulary word

Natalie Parde - UIC CS 421 57

Formal
Definition:

Learning
New

Embeddings

• Letting E be an embedding matrix, with one row
for each word in the vocabulary:

• e = (𝐸%" , 𝐸%(, … , 𝐸%))
• h = 𝜎 𝑊e + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• Optimizing this network using the same
techniques discussed for other neural networks
will result in both

• A model that predicts words
• A new set of word embeddings that can be

used for other tasks

Natalie Parde - UIC CS 421 58

Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤# = “record”|𝑤#$% = “to”, 𝑤#$& = “down”, 𝑤#$' = “sat”)

h1

h2

y1

…

“record”

…

y|V|

softmax
distribution over
all words in the
vocabulary

0

0

1

0

0

1

0

0

0

0

0

0

0

1

0

Natalie Parde - UIC CS 421 59

Summary:
Neural
Networks and
Neural
Language
Models

• Computing units can be combined with
another to solve complex tasks

• Depending on their location within the
network architectures, units may represent
input, internal compute units (hidden
units), or output classification units

• Loss can be propagated backward through
the network from the output layer to earlier
layers using backpropagation

• Network architectures can be optimized via
a fine-tuning process

• Neural networks can be used to build
neural language models

• Neural language models can also be used
to learn new language representations

Natalie Parde - UIC CS 421 60

